1. Adamatzky A. (Ed.) (2010) Game of Life Cellular Automata. London: Springer-Verlag.
2. Atluri G., Karpatne A., Kumar V. (2017) Spatio-Temporal Data Mining: A Survey of Problems and Methods. ACM Computing Surveys. vol. 1, no. 1, pp. 1–37 (https://doi.org/10.1145/3161602).
3. Basse R. M., Charif O., Bόdis K. (2016) Spatial and Temporal Dimensions of Land Use Change in Cross-Border Region of Luxemburg. Development of a Hybrid Approach Integrating GIS, Cellular Automata and Decision-Learning Tree Models. Applied Geography. vol. 67, pp. 94–108 (https://doi.org/10.1016/j.apgeog.2015.12.001).
4. Blanutsa V.I. (2018) Social'no-ekonomicheskoe rajonirovanie v epohu bol'shih dannyh [Socio-Economic Regionalization in the Era of Big Data]. Moscow: INFRA-M.
5. Blanutsa V.I. (2020) Regional'nye ekonomicheskie issledovaniya s ispol'zovaniem algoritmov iskusstvennogo intellekta: sostoyanie i perspektivy [Regional Economic Research Using Artificial Intelligence Algorithms: State and Prospects]. Vestnik Zabajkal'skogo gosudarstvennogo universiteta. vol. 26, no. 8, pp. 100–111 (https://doi.org/10.21209/2227-9245-2020-26-8-100-111).
6. Brabyn L., Jackson N. O. (2019) A New Look at Population Change and Regional Development in Aotearoa New Zealand. New Zealand Geographer. vol. 75, pp. 116–129 (https://doi.org/10.1111/nzg.12234).
7. Breiman L. (2001) Random Forests. Machine Learning. vol. 45, no. 1, pp. 5–32 (https://doi.org/10.1023/A:1010933404324).
8. Cao M., Bennett S. J., Shen Q., Xu R. (2016) A Bat-Inspired Approach to Define Transition Rules for a Cellular Automaton Model Used to Simulate Urban Expansion. International Journal of Geographical Information Science. vol. 30, no. 10, pp. 1961–1979 (https://doi.org/10.1080/13658816.2016.1151521).
9. Carlei V., Nuccio M. (2014) Mapping Industrial Patterns in Spatial Agglomeration: A SOM Approach to Italian Industrial Districts. Pattern Recognition Letters. vol. 40, pp. 1–10 (https://doi.org/10.1016/j.patrec.2013.11.023).
10. Colantonio E., Cialfi D. (2016) Smart Regions in Italy: A Comparative Study through Self-Organizing Maps. European Journal of Business and Social Science. vol. 5, no. 9, pp. 84–99.
11. Cristianini N. (2014) On the Current Paradigm in Artificial Intelligence. AI Communication. vol. 27, no. 1, pp. 37–43 (https://doi.org/10.3233/AIC-130582).
12. De Castro L. N., Timmis J. (2002) Artificial Immune Systems: A New Computational Approach. London: Springer-Verlag.
13. Dorigo M., Di Caro G., Gambardella L. M. (1999) Ant Algorithms for Discrete Optimization. Artificial Life. vol. 5, no. 2, pp. 137–172 (https://doi.org/10.1162/106454699568728).
14. Fischer M.M., Gopal S. (1994) Artificial Neural Networks: A New Approach to Modeling Interregional Telecommunication Flows. Journal of Regional Science. vol. 34, no. 4, pp. 503–527 (https://doi.org/10.1111/j.1467-9787.1994.tb00880.x).
15. Fischer M.M. (1998) Computational Neural Networks: A New Paradigm for Spatial Analysis. Environment and Planning A: Economy and Space. vol. 30, no. 10, pp. 1873–1891 (https://doi.org/10.1068/a301873).
16. Gounaridis D., Chorianopoulos I., Symeonakis E., Koukoulas S. (2019) A Random Forest – Cellular Automata Modelling Approach to Explore Future Land Use/Cover Change in Attica (Greece), Under Different Socio-Economic Realities and Scales. Science of the Total Environment. vol. 646, pp. 320–335.
17. Grekousis G. (2019) Artificial Neural Networks and Deep Learning in Urban Geography: A Systematic Review and Meta-Analysis. Computers, Environment and Urban Systems. vol. 74, pp. 244–256 (https://doi.org/10.1016/j.compenvurbsys.2018.10.008).
18. Haenlein M., Kaplan A.A. (2019) A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review. vol. 61, no. 4, pp. 5–14 (https://doi.org/10.1177/0008125619864925).
19. Hajek P., Henriques R., Hajkova V. (2014) Visualising Components of Regional Innovation Systems Using Self-Organizing Maps – Evidence from European Regions. Technological Forecasting and Social Change. vol. 84, pp. 197–214 (https://doi.org/10.1016/j.techfore.2013.07.013).
20. He Y., Ai B., Yao Y., Zhong F. (2015) Deriving Urban Dynamics Evolution Rules from Self-Adaptive Cellular Automata with Multi-Temporal Remote Sensing Images. International Journal of Applied Earth Observation and Geoinformation. vol. 38, pp. 164–174 (https://doi.org/10.1016/j.jag.2014.12.014).
21. Henriques R., Bacao F., Lobo V. (2012) Exploratory Geospatial Data Analysis Using the GeoSOM Suite. Computers, Environment and Urban Systems. vol. 36, no. 3, pp. 218–232 (https://doi.org/10.1016/j.compenvurbsys.2011.11.003).
22. Janowicz K., Gao S., McKenzie G., Hu Y., Bhaduri B. (2020) GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond. International Journal of Geographical Information Science. vol. 34, no. 4, pp. 625–636 (https://doi.org/10.1080/13658816.2019.1684500).
23. Karimi F., Sultana S., Bakakan A. S., Suthaharan S. (2019) An Enhanced Support Vector Machine Model for Urban Expansion Prediction. Computers, Environment and Urban Systems. vol. 75, pp. 61–75 (https://doi.org/10.1016/j.compenvurbsys.2019.01.001).
24. Kohonen T. (2001) Self-Organizing Maps. 3rd ed. Berlin, Heidelberg: Springer-Verlag.
25. LeCun Y., Boser B., Denker J. S., Henderson D., Howard R. E., Hubbard W., Jackel L. D. (1989) Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation. vol. 1, no. 4, pp. 541–551.
26. Li D., Wang S., Yuan H., Li D. (2016) Software and Applications of Spatial Data Mining. WIREs: Data Mining and Knowledge Discovery. vol. 6, no. 3, pp. 84–114 (https://doi.org/10.1002/widm.1180).
27. Liu D., Tang W., Liu Y., Zhao X., He J. (2017) Optimal Rural Land Use Allocation in Central China: Linking the Effect of Spatiotemporal Patterns and Policy Interventions. Applied Geography. vol. 86, pp. 165–182 (https://doi.org/10.1016/j.apgeog.2017.05.012).
28. Liu X., Ou J., Li X., Ai B. (2013) Combining System Dynamics and Hybrid Particle Swarm Optimization for Land Use Allocation. Ecological Modelling. vol. 257, no. 5, pp. 11–24 (https://doi.org/10.1016/j.ecolmodel.2013.02.027).
29. Liu Y., Feng Y., Pontius R. G. (2014) Spatially-Explicit Simulation of Urban Growth through Self-Adaptive Genetic Algorithm and Cellular Automata Modelling. Land. vol. 3, no. 3, pp. 719–738 (https://doi.org/10.3390/land3030719).
30. Liu Y. L., Tang D. W., Kong X., Liu Y. F., Ai T. (2014) A Land-Use Spatial Allocation Model Based on Modified Ant Colony Optimization. International Journal of Environmental Research. vol. 8, no. 4, pp. 1115–1126 (https://doi.org/10.22059/IJER.2014.805).
31. López-Iturriaga F. J., Sanz I. P. (2018) Predicting Public Corruption with Neural Networks: An Analysis of Spanish Provinces. Social Indicators Research. vol. 140, pp. 975–998 (https://doi.org/10.1007/s11205-017-1802-2).
32. Lu Y., Laffan S., Pettit C., Cao M. (2020) Land Use Change Simulation and Analysis Using a Vector Cellular Automata (CA) Model: A Case Study of Ipswich City, Queensland, Australia. Environment and Planning B: Urban Analysis and City Science. vol. 47, no. 9, pp. 1605–1621 (https://doi.org/10.1177/2399808319830971).
33. Ma X., Zhao X. (2015) Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China. Sustainability. vol. 7, no. 11, pp. 15632–15651 (https://doi.org/10.3390/su71115632).
34. Mitchell M. (1996) An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.
35. Naghibi F., Delavar M. R., Pijanowski B. (2016) Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm. Sensor. vol. 16, no. 12, e2122 (https://doi.org/10.3390/s16122122).
36. Nijkamp P., Reggiani A., Tsang W. F. (2004) Comparative Modelling of Interregional Transport Flows: Applications to Multimodal European Freight Transport. European Journal of Operational Research. vol. 155, no. 3, pp. 584–602 (https://doi.org/10.1016/j.ejor.2003.08.007).
37. Poletaeva N.G. (2020) Klassifikaciya sistem mashinnogo obucheniya [Classification of Machine Learning Systems]. Vestnik Baltijskogo federal'nogo universiteta im. I. Kanta. Seriya: Fiziko-matematicheskie i tekhnicheskie nauki. no. 1, pp. 5–22.
38. Psyllidis A., Yang J., Bozzon A. (2018) Regionalization of Social Interactions and Points-Of-Interest Location Prediction with Geosocial Data. IEEE Access. vol. 6, pp. 34334–34353 (https://doi.org/10.1109/ACCESS.2018.2850062).
39. Qian Y., Xing W., Guan X., Yang T., Wu H. (2020) Coupling Cellular Automata with Area Partitioning and Spatiotemporal Convolution for Dynamic Land Use Change Simulation. Science of the Total Environment. vol. 722, e137738 (https://doi.org/10.1016/j.scitotenv.2020.137738).
40. Qiu R., Xu W., Zhang J., Staenz K. (2018) Modelling and Simulating Urban Residential Land Development in Jiading New City, Shanghai. Applied Spatial Analysis and Policy. vol. 11, pp. 753–777 (https://doi.org/10.1007/s12061-017-9244-4).
41. Sharygin M.D., Stolbov V.A. (2020) Teoretiko-metodologicheskie aspekty poiska zakonov i zakonomernostej v obshchestvennoj geografii [Theoretical and Methodological Aspects of the Search for Laws and Regularities in Public Geography]. Geograficheskij vestnik. no. 1, pp. 22–32 (https://doi.org/10.17072/2079-7877-2020-1-22-32).
42. Su S., Sun Y., Lei C., Weng M., Cai Z. (2017) Reorienting Paradoxical Land Use Policies Towards Coherence: A Self-Adaptive Ensemble Learning Geo-Simulation of Tea Expansion under Different Scenarios in Subtropical China. Land Use Policy. vol. 67, pp. 415–425 (https://doi.org/10.1016/j.landusepol.2017.06.011).
43. Triantakonstantis D., Mountrakis G. (2012) Urban Growth Prediction: A Review of Computational Models and Human Perceptions. Journal of Geographic Information System. vol. 4, pp. 555–587 (https://doi.org/10.4236/jgis.2012.46060).
44. Vapnik V. N. (1998) Statistical Learning Theory. New York: John Wiley and Sons.
45. Wang S., Eick C. F. (2018) A Data Mining Framework for Environmental and Geospatial Data Analysis. International Journal of Data Science and Analytics. vol. 5, pp. 83–98 (https://doi.org/10.1007/s41060-017-0075-9).
46. Wang W., Jiao L., Zhang W., Jia Q., Su F., Xu G., Ma S. (2020) Delineating Urban Growth Boundaries under Multi-Objective and Constraints. Sustainable Cities and Society. vol. 61, pp. 1–12 (https://doi.org/10.1016/j.scs.2020.102279).
47. Wu P., Tan Y. (2019) Estimation of Poverty Based on Remote Sensing Image and Convolutional Neural Network. Advances in Remote Sensing. vol. 8, no. 4, pp. 89–98 (https://doi.org/10.4236/ars.2019.84006).
48. Wylie B. K., Pastick N. J., Picotte J. J., Deering C. A. (2019) Geospatial Data Mining for Digital Raster Mapping. GIScience and Remote Sensing. vol. 56, no. 3, pp. 406–429 (https://doi.org/10.1080/15481603.2018.1517445).
49. Yan J., Thill J.-C. (2009) Visual Data Mining in Spatial Interaction Analysis with Self-Organizing Maps. Environment and Planning B: Planning and Design, vol. 36, no. 3, pp. 466–486 (https://doi.org/10.1068/b34019).
50. Yao J., Mitran T., Kong X., Lal R., Chu Q., Shaukat M. (2020) Land Use and Land Cover Identification and Disaggregating Socio-Economic Data with Convolutional Neural Network. Geocarto International. vol. 35, no. 10, pp. 1109–1123 (https://doi.org/10.1080/10106049.2019.1568587).
Comments
No posts found